Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam

نویسنده

  • Trivedi
چکیده

Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Paracetamol and piroxicam are non-steroidal anti-inflammatory drugs (NSAIDs), widely used in pain and inflammatory diseases. The present study aimed to evaluate the impact of biofield treatment on spectral properties of paracetamol and piroxicam. The study was performed in two groups (control and treatment) of each drug. The control groups remained as untreated, and biofield treatment was given to treatment groups. Subsequently, spectral properties of both drugs before and after biofield treatment were characterized using FT-IR and UV-Vis spectroscopic techniques. FT-IR data of paracetamol showed N-H amide II bending peak in biofield treated paracetamol, which was shifted to lower wavenumber (1565 to 1555 cm-1) as compared to control. Further, the intensity of vibrational peaks in the range of 1171-965 cm-1 (C-O and C-N stretching) were increased in treated sample of paracetamol as compared to control. Similarly, the FT-IR data of piroxicam (treated) showed increased intensity of vibrational peaks at 1628 (amide C=O stretching), 1576-1560 cm-1 (C=C stretching) with respect to control peaks. Furthermore, vibrational peak of C=N stretching (1467 cm-1) was observed in biofield treated piroxicam. This peak was not observed in control sample, possibly due to its low intensity. Based on FT-IR data, it is speculated that bond length and dipole moment of some bonds like N-H (amide), C-O, and C-N in paracetamol and C=O (amide), C=N, and C=C in piroxicam might be changed due to biofield treatment. The UV spectrum of biofield treated paracetamol showed the shifting in wavelength of UV absorption as 243→248.2 nm and 200→203.4 nm as compared to control. Likely, the lambda max (λmax) of treated piroxicam was also shifted as 328 →345.6 nm, 241→252.2 nm, and 205.2→203.2 nm as compared to control. Overall results showed an impact of biofield treatment on the spectral properties of paracetamol and piroxicam.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of virgin olive oil versus piroxicam phonophoresis on exercise-induced anterior knee pain

Objective: The main purpose of this study was to evaluate the effects of virgin olive oil phonophoresis on female athletes' anterior knee pain (AKP). Materials and Methods: A double blinded randomized clinical trial was conducted. Ninety-three female athletes suffering from AKP voluntarily participated in this study. Patients were randomly assigned into olive oil (n=31), piroxicam (n=31) or bas...

متن کامل

Impact of Biofield Treatment on Physical, Structural and Spectral Properties of Antimony Sulfide

Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. In solar cell absorber, the optoelectrical properties such as energy band gap and absorption coefficient of Sb2S3 play an important role, which have strong relationships with their crystal structure, lattice parameter and crystallite size. Hence in th...

متن کامل

Antioxidant properties and Glutathione S-transferases inhibitory activity of Alchornea cordifolia leaf extract in Acetaminophen toxicity

Paracetamol (acetaminophen, PCM) is a widely used over-the-counter analgesic and antipyretic drug. Intake of a large dose of PCM may result in severe hepatic necrosis. Oxidative stress is mediated by oxidative capacities of the PCM metabolite (N-acetyl-para-benzo quinoneimine, NAPQI), which covalently binds to proteins and other macromolecules to cause cellular damage. At low doses, NAPQI is ...

متن کامل

Characterization of Physical, Thermal and Spectral Properties of Biofield Treated 2,6-Dichlorophenol

2,6-Dichlorophenol (2,6-DCP) is a compound used for the synthesis of chemicals and pharmaceutical agents. The present work is intended to evaluate the impact of Mr. Trivedi’s biofield energy treatment on physical, thermal and spectral properties of the 2,6-DCP. The control and treated 2,6-DCP were characterized by various analytical techniques such as X-ray diffraction (XRD), differential scann...

متن کامل

Evaluation of Physical, Thermal and Spectral Parameters of Biofield Energy Treated Methylsulfonylmethane

The methylsulfonylmethane (MSM) is an organosulfur compound having sulfonyl functional group. It is occurred naturally in some primitive plants and used in disease related to chronic pain, inflammation, and arthritis. This study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal, and spectral properties of MSM. The study was performed in two groups viz. t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015